
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 05 | May -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 1

Server Scalability Review: Technical & Operational Feasibility

Dhunav Dhuray

Prof. Shailendra Tiwari, HOD CSE, Astral Institute of Technology and Research.

---***---
Abstract – A survey on Kubernetes with scaling both
horizontal and vertical can result in cheap and high speed
response time. Mainly managing microservices and
maintaining thousands of containers are difficult but with
Kubernetes, it is automated and made hassle free to work
with. Scalability helps in increasing the response time
saving the money by scaling down when not needed.

Key Words: Kubernetes, scalability, microservices, container.

1. INTRODUCTION

Cloud computing is an emerging general purpose technology
(GPT) that could provide a fundamental contribution to
efficiency in the private and public sectors, as well as promote
growth, competition, and business creation. It is an Internet-
based technology through which information is stored in
servers and provided as an on-demand service to clients [1].

Server consolidation is an option widely used to maximize the
effective use of server resources to decrease the number of
servers required by a company. Generally, servers in many
enterprises run at 15-20% of their capacity. Needless to say,
this is not a sustainable ratio in the current economic
environment. In order to reduce unnecessary costs and increase
the return on investment in the data center, companies are now
increasingly turning to server consolidation. Even though
consolidation can considerably improve the efficient use of
server resources, it may also bring about complex
configurations of data, applications, and servers that can be
confusing for the average user to deal with. To mitigate this
issue, companies use server virtualization to mask the details of
server resources from users while optimizing resource sharing
[2].

In server virtualization, single server executes the task of
multiple servers by sharing out the resources of an individual
server across multi-environments. The server virtualization and
consolidation (SVC) benefits result from a reduction in the
overall number of systems and related recurring costs
(peripheral, cooling, power, rack space, etc.)[3].

In the real world, I expect most of us are going to be running
both containers and VMs on our clouds and data-centers. The
economy of containers at scale makes too much financial sense
for anyone to ignore. In addition, containers tend to lock you
into a particular operating system version. That can be a good
thing: You don't have to worry about dependencies once you
have the application running properly in a container [4].

Containerization allows developers to create and deploy
applications faster and more securely. With traditional

methods, code is developed in a specific computing
environment which, when transferred to a new location, often
results in bugs and errors. Containers are often referred to as
“lightweight,” meaning they share the machine’s operating
system kernel and do not require the overhead of associating an
operating system within each application. Containers are
inherently smaller in capacity than a VM and require less start-
up time, allowing far more containers to run on the same
compute capacity as a single VM. This drives higher server
efficiencies and, in turn, reduces server and licensing costs [5].

Kubernetes (K8s) is an open-source system for automating
deployment, scaling, and management of containerized
applications. Horizontal scaling, Scale your application up and
down with a simple command, with a UI, or automatically
based on CPU usage [6].

Micro services system architecture is the process of splitting up
core services into their own ecosystems. A key part of your
application may be an image processing service that can save,
delete, and cache and manipulate images. This service could be
set up as its own infrastructure which means that it would be
separated from the other application services. You’ll often hear
the term separation of concerns when referring to micro
services. Although each core service having its own
infrastructure can make scalability easier, it can still add a lot
of complexity to your application. You’ll now have to manage
multiple servers but also change your application code to
handle these changes. Vertical scaling is often thought of as the
“easier” of the two methods. When scaling a system vertically,
you add more power to an existing instance. This can mean
more memory (RAM), faster storage such as Solid State Drives
(SSDs), or more powerful processors (CPUs).The reason this is
thought to be the easier option is that hardware is often trivial
to upgrade on cloud platforms like AWS, where servers are
already virtualized. There is also very little (if any) additional
configuration you are required to do at the software level.
Horizontal scaling is slightly more complex. When scaling your
systems horizontally, you generally add more servers to spread
the load across multiple machines. With this, however, comes
added complexity to your system. You now have multiple
servers that require the general administration tasks such as
updates, security and monitoring but you must also now sync
your application, data and backups across many instances [7].

2. Discussion
A monolith has a rather luxurious taste in hardware. Being a
huge, single section of software, which nonstop grows, it must
run on a solo system which has to mollify its compute, memory,
storage, and networking requirements. The hardware of such
size is both complex and expensive. They are carved out of the
monolith, unglued from one another, becoming distributed
components each labeled by a set of specific features. Once
weighed all collected. These are loosely coupled microservices,

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 05 | May -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 2

each performing specific occupational function. All the
purposes grouped together form the overall functionality of the
novel monolithic application.

With container images, we confine the application code, its
runtime, and all of its dependencies in a pre-defined format.
And, with container runtimes like runC, containerd, or rkt we
can use those pre-packaged images, to create one or more
containers. All of these runtimes are moral at running
containers on a solo host. But, in repetition, we would like to
have a fault-tolerant and scalable resolution, which can be
accomplished by creating a single controller/management unit,
after connecting multiple nodes together. This
controller/management unit is generally referred to as a
container orchestrator.
Kubernetes' architecture is modular and pluggable. Not only
that it orchestrates modular, decoupled microservices type
applications, but also its architecture trails decoupled
microservices patterns. Kubernetes' functionality can be
extended by writing custom resources, operators, custom APIs,
scheduling rules or plugins.

A Pod is the smallest and simplest Kubernetes object. It is the
unit of deployment in Kubernetes, which represents a single
instance of the application.

Labels are key-value pairs attached to Kubernetes objects (e.g.
Pods, ReplicaSets). Labels are used to organize and select a
subset of objects, based on the requirements in place.

A ReplicaSet is the next-generation Replication
Controller. ReplicaSets support both equality- and set-
based selectors, whereas ReplicationControllers only
support equality-based Selectors. Currently, this is the
only difference.

Deployment objects provide declarative updates to Pods and
ReplicaSets. The DeploymentController is part of the master
node's controller manager, and it ensures that the current state

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 05 | May -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 3

always matches the desired state. It allows for seamless
application updates and downgrades through rollouts and
rollbacks, and it directly manages its ReplicaSets for application
scaling.

3. CONCLUSIONS
A container that runs as privileged inside a virtual machine,
without resource limitations, security profiles and so on, it’s
kind of a smart tarball and nothing more. But if you put together
all the capabilities provided by containers you can reach a good
isolation, plus a light and easy ecosystem to run, distribute and
manage your application. Starting a virtual machine is more
expensive in terms of time than starting a container. The same
goes for the distribution and building part. How munch a
Dockerfile looks easier than other solution related virtual
machine provisioning. They are similar in that they both
provide isolated environments – they can both be used to
package up and distribute software. However, containers are
typically much smaller and faster, which makes them a much
better fit for fast development cycles and microservices. The
trade-off is that containers don’t do true virtualization; you
can’t run a windows container on a Linux host for example. It’s
also worth pointing out that several companies are trying to
create tooling around slimmed down VMs to try to get the best
of both worlds e.g. hyper.sh, Intel Clear Containers and
vSphere Integrated Containers.

VMs allow users to manage hosts by APIs and offer
infrastructure elasticity. Docker allows users to define software
as small lego blocks to assemble, so they embrace modern
architectures: immutable infrastructures, microservices,
distributed software, and more.

REFERENCES

1. S. Dutta and I. Mia, "The global information technology report
2009–2010," in World Economic Forum and INSEAD, SRO-
Kundig Geneva, Switzerland, 2010.

2. Soaring Eagle Database Consulting, “What is server consolidation
and when is it necessary?.” 2018. [Online]. Available:
https://soaringeagle.biz/what-is-server-consolidation-and-when-
is-it-necessary/.

3. C.Chuan-Fu and C.Shiuann-Shuoh, “Implement server
virtualization and consolidation using 2P-cloud architecture,”
Journal of Applied Science and Engineering, vol. 20, no. 1, pp.
121-130, 2017.

4. S J. Vaughan-Nichols, “Containers vs. virtual machines: How to
tell which is the right choice for your enterprise.” 2016. [Online].
Available:https://www.networkworld.com/article/3068392/contai
ners-vs-virtual-machines-how-to-tell-which-is-the-right-choice-
for-your-enterprise.html

5. Kubernetes, “Production-Grade Container Orchestration.” 2019.
[Online]. Available: https://kubernetes.io/.

6. IBM Cloud Education, “Containerization.” 2019. [Online].
Available:https://www.ibm.com/cloud/learn/containerization.

7. Linux Academy, “Scaling”. [Online] Available:
https://linuxacademy.com/blog/cloud/scalability-cloud-
computing/

